The Alpha Subunit of Nitrile Hydratase Is Sufficient for Catalytic Activity and Post-Translational Modification

نویسندگان

  • Micah T. Nelp
  • Andrei V. Astashkin
  • Linda A. Breci
  • Reid M. McCarty
  • Vahe Bandarian
چکیده

Nitrile hydratases (NHases) possess a mononuclear iron or cobalt cofactor whose coordination environment includes rare post-translationally oxidized cysteine sulfenic and sulfinic acid ligands. This cofactor is located in the α-subunit at the interfacial active site of the heterodimeric enzyme. Unlike canonical NHases, toyocamycin nitrile hydratase (TNHase) from Streptomyces rimosus is a unique three-subunit member of this family involved in the biosynthesis of pyrrolopyrimidine antibiotics. The subunits of TNHase are homologous to the α- and β-subunits of prototypical NHases. Herein we report the expression, purification, and characterization of the α-subunit of TNHase. The UV-visible, EPR, and mass spectra of the α-subunit TNHase provide evidence that this subunit alone is capable of synthesizing the active site complex with full post-translational modifications. Remarkably, the isolated post-translationally modified α-subunit is also catalytically active with the natural substrate, toyocamycin, as well as the niacin precursor 3-cyanopyridine. Comparisons of the steady state kinetic parameters of the single subunit variant to the heterotrimeric protein clearly show that the additional subunits impart substrate specificity and catalytic efficiency. We conclude that the α-subunit is the minimal sequence needed for nitrile hydration providing a simplified scaffold to study the mechanism and post-translational modification of this important class of catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Post-translational modifications in nitrile hydratase family

Fe-type nitrile hydratase (NHase) from Rhodococcus sp. N771 has a novel non-heme iron active center with two post-translationally modified cysteine residues, cysteine-sulfenic and -sulfinic acids. The modified residues are involved in the sequence motif, Cys-Xxx-Leu-Cys-Ser-Cys (Xxx = Ser(Fetype)/Thr(Co-type)), which is conserved among all known NHases as well as in the homologous enzyme, thioc...

متن کامل

Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt.

The incorporation of cobalt into low molecular mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 has been found to depend on the alpha-subunit exchange between cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues) and its cobalt-containing mediator (holo-NhlAE containing Cys-SO(2)(-) and Cys-SO(-) metal ligands), this novel mode of post-translational maturation havin...

متن کامل

Nitrile Hydratase Genes Are Present in Multiple Eukaryotic Supergroups

BACKGROUND Nitrile hydratases are enzymes involved in the conversion of nitrile-containing compounds into ammonia and organic acids. Although they are widespread in prokaryotes, nitrile hydratases have only been reported in two eukaryotes: the choanoflagellate Monosiga brevicollis and the stramenopile Aureococcus anophagefferens. The nitrile hydratase gene in M. brevicollis was believed to have...

متن کامل

Synthesis of amides and peptides using new enzyme function

We have extensively studied microbial metabolism of toxic compounds with a triple bond between carbon and nitrogen, such as nitriles [R–CN] . In the Pseudomonas chlororaphis B23 strain, nitrile is hydrated to amide by nitrile hydratase (NHase), followed by degradation to acid by amidase. This strain’s NHase was previously used for the industrial acrylamide production and is now used for the pro...

متن کامل

Molecular dynamics simulations of the photoactive protein nitrile hydratase.

Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, alpha and beta. Hydrogen bonds between betaArg-56 and alphaCys-114 sulfenic acid (alphaCEA114) are important to maintain the enzymatic activity. The enzyme may be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014